Algebra and

 TrigonometryEnhanced with Graphing Utilities
Sixth Edition

MyMathLab ${ }^{\circledR}$ Innovative Technology to Help You Succeed

MyMathLab can improve any learning environment-whether you are taking a lab-based, hybrid, fully online, or a traditional lecture-style course.

INTERACTIVE FIGURES

Math comes alive with new Interactive Figures in MyMathLab! Your instructor may choose to assign assessment questions that are written to accompany each figure. This interaction will lead you to fully understand key mathematical concepts in a hands-on, engaging way.

A HISTORY OF SUCCESS

Results show that you can improve your grade by using the videos, animations, interactive figures, step-by-step examples, and personalized feedback in MyMathLab. To see the growing list of case studies for yourself, visit www.mymathlab.com/success-stories

Prepare for Class "Read the Book"

Feature	Description	Benefit	Page
Every chapter begins with....			
Chapter Opening Article \& Project	Each chapter begins with a current article and ends with a related project.	The Article describes a real situation. The Project lets you apply what you learned to solve a related problem.	398, 501
NEW! Internet-based Projects	The projects allow for the integration of spreadsheet technology that students will need to be a productive member of the workforce.	The projects allow the opportunity for students to collaborate and use mathematics to deal with issues that come up in their lives.	398, 501
Every section begins with....			
Learning Objectives 1	Each section begins with a list of objectives. Objectives also appear in the text where the objective is covered.	These focus your studying by emphasizing what's most important and where to find it.	419
Most sections contain...			
PREPARING FOR THIS SECTION	Most sections begin with a list of key concepts to review with page numbers.	Ever forget what you've learned? This feature highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.	419
Now Work the 'Are You Prepared?' Problems	Problems that assess whether you have the prerequisite knowledge for the upcoming section.	Not sure you need the Preparing for This Section review? Work the 'Are You Prepared?' problems. If you get one wrong, you'll know exactly what you need to review and where to review it!	419, 430
"Now Work" Problems \qquad	These follow most examples and direct you to a related exercise.	We learn best by doing. You'll solidify your understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.	428
WARNING	Warnings are provided in the text.	These point out common mistakes and help you to avoid them.	453
Explopations and Seeing the Concept	These represent graphing utility activities to foreshadow a concept or solidify a concept just presented.	You will obtain a deeper and more intuitive understanding of theorems and definitions.	252,425
In Words	These provide alternative descriptions of select definitions and theorems.	Does math ever look foreign to you? This feature translates math into plain English.	421
Calculus Icon \star	These appear next to information essential for the study of calculus.	Pay attention -- if you spend extra time now, you'll do better later!	365
Showcase EXAMPLES	These examples provide "how-to" instruction by offering a guided, step-by-step approach to solving a problem.	With each step presented on the left and the mathematics displayed on the right, students can immediately see how each step is employed.	337-338
Model It! Examples and Problems	Marked with @. These are examples and problems that require you to build a mathematical model from either a verbal description or data. The homework Model It! problems are marked by purple numbers.	It is rare for a problem to come in the form, "Solve the following equation". Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models that will allow you to describe the problem mathematically and suggest a solution to the problem.	444, 473

Practice "Work the Problems"

Feature	Description	Benefit	Page
"Assess Your Understanding" contains a variety of problems at the end of each section.			
'Are You Prepared?' Problems	These assess your retention of the prerequisite material you'll need. Answers are given at the end of the section exercises. This feature is related to the Preparing for This Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	419,430
Concepts and Vocabulary	These short-answer questions, mainly Fill-in-the-Blank and True/False items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	431
Skill Building	Correlated to section examples, these problems provide straightforward practice.	It's important to dig in and develop your skills. These problems provide you with ample practice to do so.	431-433
Mixed Practice	These problems offer comprehensive assessment of the skills learned in the section by asking problems that relate to more than one concept or objective. These problems may also require you to utilize skills learned in previous sections.	Learning mathematics is a building process. Many concepts are interrelated. These problems help you see how mathematics builds on itself and also see how the concepts tie together.	433
Applications and Extensions	These problems allow you to apply your skills to real-world problems. These problems also allow you to extend concepts leamed in the section.	You will see that the material learned within the section has many uses in everyday life.	433-435
Explaining Concepts: Discussion and Writing	"Discussion and Writing" problems are colored red. These support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging but you'll get out what you put in.	436
NEW! Interactive Exercises	In selected exercise sets, applets are provided to give a "hands-on" experience.	The applets allow students to interact with mathematics in an active learning environment. By exploring a variety of scenarios, the student is able to visualize the mathematics and develop a deeper conceptual understanding of the material.	345-346
"Now Work" PROBLEMS	Many examples refer you to a related homework problem. These related problems are marked by a pencil and yellow numbers.	If you get stuck while working problems, look for the closest Now Work problem and refer back to the related example to see if it helps.	429
Chapter Review Problems	Every chapter concludes with a comprehensive list of exercises to pratice. Use the list of objectives to determine the objective and examples that correspond to the problems.	Work these problems to verify you understand all the skills and concepts of the chapter. Think of it as a comprehensive review of the chapter.	495-499

Review "Study for Quizzes and Tests"

Feature	Description	Benefit	Page
Chapter Reviews at the end of each chapter contain...			
"Things to Know"	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most important material in the chapter!	494-495
"You should be able to..."	Contains a complete list of objectives by section, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll have mastery over the key material. If you get something wrong, review the suggested examples and page numbers and try again.	495-496
Review Exercises	These provide comprehensive review and practice of key skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems combine exercises from all sections, giving you a comprehensive review in one place.	496-499
CHAPTER TEST	About 15-20 problems that can be taken as a Chapter Test. Be sure to take the Chapter Test under test conditions-no notes!	Be prepared. Take the sample practice test under test conditions. This will get you ready for your instructor's test. If you get a problem wrong, watch the Chapter Test Prep video.	499-500
CUMULATIVE REVIEW	These problem sets appear at the end of each chapter, beginning with Chapter 2.They combine problems from previous chapters, providing an ongoing cumulative review.	These are really important. They will ensure that you are not forgetting anything as you go. These will go a long way toward keeping you constantly primed for the final exam.	500
CHAPTER PROJECTS	The Chapter Project applies what you've learned in the chapter. Additional projects are available on the Instructor's Resource Center (IRC).	The Project gives you an opportunity to apply what you've learned in the chapter to solve a problem related to the opening article. If your instructor allows, these make excellent opportunities to work in a group, which is often the best way of learning math.	501
NEW! Internet-based Projects	In selected chapters, a web-based project is given.	The projects allow the opportunity for students to collaborate and use mathematics to deal with issues that come up in their lives.	501

This page intentionally left blank

ALGEBRA \& TRIGONOMETRY

Enhanced with Graphing Utilities
 Sixth Edition

Michael Sullivan

Chicago State University

Michael Sullivan, III

Joliet Junior College

PEARSON

Editor in Chief: Anne Kelly
Sponsoring Editor: Dawn Murrin
Assistant Editor: Joseph Colella
Executive Marketing Manager: Roxanne McCarley
Marketing Manager: Peggy Sue Lucas
Marketing Assistant: Justine Goulart
Senior Managing Editor: Karen Wernholm
Associate Managing Editor: Tamela Ambush
Senior Production Project Manager: Peggy McMahon
Procurement Manager/Boston: Evelyn Beaton
Procurement Specialist: Debbie Rossi
Procurement Media Specialist: Ginny Michaud
Senior Author Support/Technology Specialist: Joe Vetere
Associate Director of Design, USHE North and West: Andrea Nix
Senior Design Specialist: Heather Scott
Interior and Cover Design: Tamara Newnam
Cover Image (background): iStockphoto/Simfo
Image Manager:/Image Management Services: Rachel Youdelman
Photo Research: PreMedia Global
Permissions Project Manager: Michael Joyce
Media Producer: Christina Maestri
Software Development: Kristina Evans, Mary Durnwald, and Marty Wright
Full-Service Project Management: Cenveo Publisher Services/Nesbitt Graphics, Inc.
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this text appear on page xxviii of the book

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Pearson was aware of a trademark claim, the designations have been printed in initial caps or all caps.
Microsoft ${ }^{\circledR}$ and Windows ${ }^{\circledR}$ are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data

Sullivan, Michael, 1942-
Algebra \& trigonometry : enhanced with graphing utilities/Michael Sullivan, Michael Sullivan, III. -6th ed. p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-78483-4 (alk. paper)

1. Algebra-Textbooks. 2. Trigonometry-Textbooks. 3. Algebra-Graphic methods.
2. Trigonometry-Graphic methods. I. Sullivan, Michael, 1967 July 2- II. Title.
III. Title: Algebra and trigonometry.

QA154.3.S75 2013
512'.13-dc23
2011024234
Copyright ©2013, 2009, 2006, 2003, 2000 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

For the Family

Katy (Murphy) and Pat
Mike and Yola
Dan and Sheila
Colleen (O'Hara) and Bill

Shannon, Patrick, Ryan
Michael, Kevin, Marissa
Maeve, Sean, Nolan
Kaleigh, Billy, Timmy

This page intentionally left blank

Contents

To the Student xii
Preface to the Instructor xiv
Applications Index xxi
Photo Credits xxviii
R Review 1
R. 1 Real Numbers 2
R. 2 Algebra Essentials 17
R. 3 Geometry Essentials 30
R. 4 Polynomials 39
R. 5 Factoring Polynomials 49
R. 6 Synthetic Division 59
R. 7 Rational Expressions 62
R. 8 nth Roots; Rational Exponents 73
1 Graphs, Equations, and Inequalities 81
1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations 82
1.2 Solving Equations Using a Graphing Utility; Linear and Rational Equations 98
1.3 Quadratic Equations 109
1.4 Complex Numbers; Quadratic Equations in the Complex Number System 120
1.5 Radical Equations; Equations Quadratic in Form; Absolute Value Equations; Factorable Equations 128
1.6 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications 136
1.7 Solving Inequalities 145
Chapter Review 157
Chapter Test 161
Chapter Projects 161
2 Graphs 163
2.1 Intercepts; Symmetry; Graphing Key Equations 164
2.2 Lines 172
2.3 Circles 188
2.4 Variation 195
Chapter Review 201
Chapter Test 203
Cumulative Review 203
Chapter Project 204
3 Functions and Their Graphs 205
3.1 Functions 206
3.2 The Graph of a Function 219
3.3 Properties of Functions 229
3.4 Library of Functions; Piecewise-defined Functions 241
3.5 Graphing Techniques: Transformations 252
3.6 Mathematical Models: Building Functions 264
Chapter Review 270
Chapter Test 273
Cumulative Review 274
Chapter Projects 275
4 Linear and Quadratic Functions 277
4.1 Linear Functions and Their Properties 278
4.2 Linear Models: Building Linear Functions from Data 288
4.3 Quadratic Functions and Their Properties 295
4.4 Build Quadratic Models from Verbal Descriptions and from Data 307
4.5 Inequalities Involving Quadratic Functions 316
Chapter Review 321
Chapter Test 323
Cumulative Review 324
Chapter Projects 325
5 Polynomial and Rational Functions 326
5.1 Polynomial Functions and Models 327
5.2 The Real Zeros of a Polynomial Function 346
5.3 Complex Zeros; Fundamental Theorem of Algebra 359
5.4 Properties of Rational Functions 364
5.5 The Graph of a Rational Function 375
5.6 Polynomial and Rational Inequalities 385
Chapter Review 391
Chapter Test 394
Cumulative Review 395
Chapter Projects 396
6 Exponential and Logarithmic Functions 398
6.1 Composite Functions 399
6.2 One-to-One Functions; Inverse Functions 406
6.3 Exponential Functions 419
6.4 Logarithmic Functions 436
6.5 Properties of Logarithms 449
6.6 Logarithmic and Exponential Equations 458
6.7 Financial Models 465
6.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 475
6.9 Building Exponential, Logarithmic, and Logistic Models from Data 486
Chapter Review 494
Chapter Test 499
Cumulative Review 500
Chapter Projects 501
7 Trigonometric Functions 502
7.1 Angles and Their Measure 503
7.2 Right Triangle Trigonometry 516
7.3 Computing the Values of Trigonometric Functions of Acute Angles 527
7.4 Trigonometric Functions of Any Angle 539
7.5 Unit Circle Approach; Properties of the Trigonometric Functions 549
7.6 Graphs of the Sine and Cosine Functions* 560
7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 575
7.8 Phase Shift; Sinusoidal Curve Fitting 582
Chapter Review 593
Chapter Test 598
Cumulative Review 599
Chapter Projects 599
8 Analytic Trigonometry 601
8.1 The Inverse Sine, Cosine, and Tangent Functions 602
8.2 The Inverse Trigonometric Functions (Continued) 615
8.3 Trigonometric Equations 621
8.4 Trigonometric Identities 630
8.5 Sum and Difference Formulas 638
8.6 Double-angle and Half-angle Formulas 650
8.7 Product-to-Sum and Sum-to-Product Formulas 660
Chapter Review 664
Chapter Test 667
Cumulative Review 667
Chapter Projects 668
9 Applications of Trigonometric Functions 669
9.1 Applications Involving Right Triangles 670
9.2 The Law of Sines 675
9.3 The Law of Cosines 686
9.4 Area of a Triangle 692
9.5 Simple Harmonic Motion; Damped Motion; Combining Waves 698
Chapter Review 707
Chapter Test 709
Cumulative Review 710
Chapter Projects 711
10 Polar Coordinates; Vectors 713
10.1 Polar Coordinates 714
10.2 Polar Equations and Graphs 723
10.3 The Complex Plane; De Moivre's Theorem 739
10.4 Vectors 747
10.5 The Dot Product 760
Chapter Review 767
Chapter Test 770
Cumulative Review 771
Chapter Projects 771
11 Analytic Geometry 772
11.1 Conics 773
11.2 The Parabola 774
11.3 The Ellipse 783
11.4 The Hyperbola 794
11.5 Rotation of Axes; General Form of a Conic 808
11.6 Polar Equations of Conics 816
11.7 Plane Curves and Parametric Equations 822
Chapter Review 835
Chapter Test 838
Cumulative Review 838
Chapter Projects 839
12 Systems of Equations and Inequalities 840
12.1 Systems of Linear Equations: Substitution and Elimination 841
12.2 Systems of Linear Equations: Matrices 855
12.3 Systems of Linear Equations: Determinants 870
12.4 Matrix Algebra 879
12.5 Partial Fraction Decomposition 896
12.6 Systems of Nonlinear Equations 904
12.7 Systems of Inequalities 914
12.8 Linear Programming 923
Chapter Review 929
Chapter Test 933
Cumulative Review 934
Chapter Projects 934
13 Sequences; Induction; the Binomial Theorem 936
13.1 Sequences 937
13.2 Arithmetic Sequences 950
13.3 Geometric Sequences; Geometric Series 956
13.4 Mathematical Induction 965
13.5 The Binomial Theorem 969
Chapter Review 975
Chapter Test 977
Cumulative Review 978
Chapter Projects 978
14 Counting and Probability 980
14.1 Counting 981
14.2 Permutations and Combinations 986
14.3 Probability 995
Chapter Review 1005
Chapter Test 1007
Cumulative Review 1008
Chapter Projects 1008
Answers AN 1
Index 11

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations. You may wonder if you can learn it all in time. Don't worry, your concerns are normal. This textbook was written with you in mind. If you attend class, work hard, and read and study this book, you will build the knowledge and skills you need to be successful. Here's how you can use the book to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't. . . the book has a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class if you do this.

Use the Features

We use many different methods in the classroom to communicate. Those methods, when incorporated into the book, are called "features." The features serve many purposes, from providing timely review of material you learned before (just when you need it), to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this book. Refer to the "Prepare for Class," "Practice," and "Review" pages in the front of this book. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your textbook.

Please do not hesitate to contact us, through Pearson Education, with any questions, suggestions, or comments that would improve this text. We look forward to hearing from you, and good luck with all of your studies.

Best Wishes!

Michael Sullivan
Michael Sullivan, III

Three Distinct Series

Students have different goals, learning styles, and levels of preparation. Instructors have different teaching philosophies, styles, and techniques. Rather than write one series to fit all, the Sullivans have written three distinct series. All share the same goal - to develop a high level of mathematical understanding and an appreciation for the way mathematics can describe the world around us. The manner of reaching that goal, however, differs from series to series.

Contemporary Series, Ninth Edition

The Contemporary Series is the most traditional in approach yet modern in its treatment of precalculus mathematics. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra, Algebra \& Trigonometry, Trigonometry, Precalculus.

Enhanced with Graphing Utilities Series, Sixth Edition

This series provides a more thorough integration of graphing utilities into topics, allowing students to explore mathematical concepts and foreshadow ideas usually studied in later courses. Using technology, the approach to solving certain problems differs from the Contemporary Series, while the emphasis on understanding concepts and building strong skills does not: College Algebra, Algebra \& Trigonometry, Precalculus.

Concepts through Functions Series, Second Edition

This series differs from the others, utilizing a functions approach that serves as the organizing principle tying concepts together. Functions are introduced early in various formats. This approach supports the Rule of Four, which states that functions are represented symbolically, numerically, graphically, and verbally. Each chapter introduces a new type of function and then develops all concepts pertaining to that particular function. The solutions of equations and inequalities, instead of being developed as stand-alone topics, are developed in the context of the underlying functions. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra; Precalculus, with a Unit Circle Approach to Trigonometry; Precalculus, with a Right Triangle Approach to Trigonometry.

Preface to the Instructor

As professors at both an urban university and a community college, Michael Sullivan and Michael Sullivan, III, are aware of the varied needs of Algebra and Trigonometry students, ranging from those who have little mathematical background and a fear of mathematics courses, to those having a strong mathematical education and a high level of motivation. For some of your students, this will be their last course in mathematics, whereas others will further their mathematical education. This text is written for both groups.

As a teacher, and as an author of precalculus, engineering calculus, finite mathematics, and business calculus texts, Michael Sullivan understands what students must know if they are to be focused and successful in upper-level math courses. However, as a father of four, he also understands the realities of college life. As an author of a developmental mathematics series, Michael's co-author and son, Michael Sullivan, III, understands the trepidations and skills students bring to the Algebra and Trigonometry course. Michael III also believes in the value of technology as a tool for learning that enhances understanding without sacrificing math skills. Together, both authors have taken great pains to ensure that the text contains solid, student-friendly examples and problems, as well as a clear and seamless writing style.

A tremendous benefit of authoring a successful series is the broad-based feedback we receive from teachers and students. We are sincerely grateful for their support. Virtually every change in this edition is the result of their thoughtful comments and suggestions. We are sincerely grateful for this support and hope that we have been able to take these ideas and, building upon a successful fifth edition, make this series an even better tool for learning and teaching. We continue to encourage you to share with us your experiences teaching from this text.

Features in the Sixth Edition

Rather than provide a list of features here, that information can be found on the endpapers in the front of this book.

This places the features in their proper context, as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review this and to discuss it with your students at the beginning of your course. Our experience has been that when students utilize these features, they are more successful in the course.

New to the Sixth Edition

- Chapter Projects, which apply the concepts of each chapter to a real-world situation, have been enhanced to give students an up-to-the-minute experience. Many
projects are new and Internet-based, requiring the student to research information online in order to solve problems.
- Author Solves It MathXL Video Clips - author Michael Sullivan, III solves MathXL exercises typically requested by his students for more explanation or tutoring. These videos are a result of Sullivan's experiences in the classroom and experiences in teaching online.
- Exercise Sets at the end of each section remain classified according to purpose. The "Are You Prepared?" exercises have been expanded to better serve the student who needs a just-in-time review of concepts utilized in the section. The Concepts and Vocabulary exercises have been updated. These fill-in-the-blank and True/False problems have been written to serve as reading quizzes. Skill Building exercises develop the student's computational skills and are often grouped by objective. Mixed Practice exercises have been added where appropriate. These problems offer a comprehensive assessment of the skills learned in the section by asking problems that relate to more than one objective. Sometimes these require information from previous sections so students must utilize skills learned throughout the course. Applications and Extension problems have been updated and many new problems involving sourced information and data have been added to bring relevance and timeliness to the exercises. The Explaining Concepts: Discussion and Writing exercises have been updated and reworded to stimulate discussion of concepts in online discussion forums. These can also be used to spark classroom discussion. Finally, in the Annotated Instructor's Edition, we have preselected problems that can serve as sample homework assignments. These are indicated by a blue underline, and they are assignable in MyMathLab ${ }^{\circledR}$ if desired.
- The Chapter Review now includes answers to all the problems. The exercises are no longer "paired" in the sense that the even problem is similar to the corresponding odd problem. Instead, we have created a separate review worksheet for each chapter to help students review and practice key skills to prepare for exams. The worksheets can be found within MyMathLab or downloaded from the Instructor's Resource Center.

Changes in the Sixth Edition

- CONTENT

- Chapter 3, Section 3 A new objective "Use a graph to locate the absolute maximum and the absolute minimum" has been added. The Extreme Value Theorem is also cited here.
- Chapter 4,Section 3 A new objective "Find a quadratic function given its vertex and one point" has been added.

- ORGANIZATION

- Chapter R, Section 5 The objective "Complete the Square" has been relocated to here from Chapter 1.
- Chapter 5, Sections 5 and 6 Section 5, The Real Zeros of a Polynomial Function and Section 6, Complex Zeros, Fundamental Theorem of Algebra have been moved to Sections 2 and 3, respectively. This was done in response to reviewer requests that "everything involving polynomials" be located sequentially. Skipping the new Sections 2 and 3 and proceeding to Section 4 Properties of Rational Functions can be done without loss of continuity.
- Chapter 8 The two sections on trigonometric equations, Trigonometric Equations (I) and Trigonometric Equations (II), have been consolidated into a new section in Chapter 8, Section 3, entitled Trigonometric Equations. In addition, trigonometric equations that utilize specific identities have been woven into the appropriate sections throughout the remainder of Chapter 8.
- Chapter 10 The material on applications of vectors that was formerly in Section 5 on the Dot Product has been moved to Section 4 to emphasize the applications of the resultant vector.

Using the Sixth Edition Effectively with Your Syllabus

To meet the varied needs of diverse syllabi, this book contains more content than is likely to be covered in an Algebra \& Trigonometry course. As the chart illustrates, this book has been organized with flexibility of use in mind. Within a given chapter, certain sections are optional (see the detail following the flowchart) and can be omitted without loss of continuity.

Chapter R Review

This chapter consists of review material. It may be used as the first part of the course or later as a just-in-time review when the content is required. Specific references to this chapter occur throughout the book to assist in the review process.

Chapter 1 Graphs, Equations and Inequalities

Primarily a review of Intermediate Algebra topics, with the exception of the introduction to the graphing utility, this material is prerequisite for later topics. The coverage of complex numbers and quadratic equations with a negative discriminant is optional and may be postponed or skipped entirely without loss of continuity.

Chapter 2 Graphs

This chapter lays the foundation for functions. Section 2.4 is optional.

Chapter 3 Functions and Their Graphs

Perhaps the most important chapter. Section 3.6 is optional.

Chapter 4 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 4.2 and 4.4 may be omitted without a loss of continuity.

Chapter 5 Polynomial and Rational Functions

Topic selection depends on your syllabus.

Chapter 6 Exponential and Logarithmic Functions

Sections 6.1-6.6 follow in sequence. Sections 6.7, 6.8, and 6.9 are optional.

Chapter 7 Trigonometric Functions

Section 7.8 may be omitted in a brief course.

Chapter 8 Analytic Trigonometry

Sections 8.2, 8.6, and 8.8 may be omitted in a brief course.

Chapter 9 Applications of Trigonometric Functions

Sections 9.4 and 9.5 may be omitted in a brief course.

Chapter 10 Polar Coordinates; Vectors

Sections 10.1-10.3 and Sections 10.4-10.5 are independent and may be covered separately.

Chapter 11 Analytic Geometry

Sections 11.1-11.4 follow in sequence. Sections 11.5, 11.6, and 11.7 are independent of each other, but each requires Sections 11.1-11.4.

Chapter 12 Systems of Equations and Inequalities

Sections 12.2-12.7 may be covered in any order, but each requires Section 12.1. Section 12.8 is optional but requires Section 12.7.

Chapter 13 Sequences; Induction; The Binomial Theorem

There are three independent parts: Sections 13.1-13.3; Section 13.4; and Section 13.5.

Chapter 14 Counting and Probability
The sections follow in sequence.

Acknowledgments

Textbooks are written by authors, but evolve from an idea to final form through the efforts of many people. It was Don Dellen who first suggested this book and series. Don is remembered for his extensive contributions to publishing and mathematics.

Thanks are due to the following people for their assistance and encouragement to the preparation of this edition:

- From Pearson Education: Anne Kelly for her substantial contributions, ideas, and enthusiasm; Peggy Lucas, who is a huge fan and supporter; Dawn Murrin, for her unmatched talent at getting the details right; Peggy McMahon for her organizational skills and leadership in overseeing production; Chris Hoag for her continued
support and genuine interest; Greg Tobin for his leadership and commitment to excellence; and the Pearson Math and Science Sales team, for their continued confidence and personal support of our books.
- Bob Walters, Production Manager, who passed away after a long and valiant battle fighting lung disease. He was an old and dear friend - a true professional in every sense of the word.
- Accuracy checkers: C. Brad Davis, who read the entire manuscript and accuracy checked answers. His attention to detail is amazing; Timothy Britt, for creating the Solutions Manuals and accuracy checking answers; Teri Lovelace, George Seki, and Peggy Irish, who helped proofread the text.
- Reviewers: Larissa Williamson, University of Florida; Richard Nadel, Florida International University; Robin Steinberg, Puma CC; Mike Rosenthal, Florida International University; Gerardo Aladro, Florida International University; Tammy Muhs, University of Central Florida; Val Mohanakumar, Hillsborough CC.

Finally, we offer our grateful thanks to the dedicated users and reviewers of our books, whose collective insights form the backbone of each textbook revision.

Our list of indebtedness just grows and grows. And, if we've forgotten anyone, please accept our apology. Thank you all.

James Africh, College of DuPage
Steve Agronsky, Cal Poly State University
Grant Alexander, Joliet Junior College
Dave Anderson, South Suburban College
Richard Andrews, Florida A\&M University
Joby Milo Anthony, University of Central Florida
James E. Arnold, University of WisconsinMilwaukee
Adel Arshaghi, Center for Educational Merit
Carolyn Autray, University of West Georgia
Agnes Azzolino, Middlesex County College
Wilson P. Banks, Illinois State University
Sudeshna Basu, Howard University
Dale R. Bedgood, East Texas State University
Beth Beno, South Suburban College
Carolyn Bernath, Tallahassee Community College
Rebecca Berthiaume, Edison State College
William H. Beyer, University of Akron
John Bialas, Joliet Junior College
Annette Blackwelder, Florida State University
Richelle Blair, Lakeland Community College
Linda Blanco, Joliet Junior College
Kevin Bodden, Lewis and Clark College
Rebecca Bonk, Joliet Junior College
Barry Booten, Florida Atlantic University
Larry Bouldin, Roane State Community College
Bob Bradshaw, Ohlone College
Trudy Bratten, Grossmont College
Tim Bremer, Broome Community College
Tim Britt, Jackson State Community College
Michael Brook, University of Delaware
Joanne Brunner, Joliet Junior College
Warren Burch, Brevard Community College
Mary Butler, Lincoln Public Schools
Melanie Butler, West Virginia University
Jim Butterbach, Joliet Junior College
William J. Cable, University of WisconsinStevens Point
Lois Calamia, Brookdale Community College
Jim Campbell, Lincoln Public Schools
Roger Carlsen, Moraine Valley Community College
Elena Catoiu, Joliet Junior College
Mathews Chakkanakuzhi, Palomar College
Tim Chappell, Penn Valley Community College
John Collado, South Suburban College
Alicia Collins, Mesa Community College
Nelson Collins, Joliet Junior College
Jim Cooper, Joliet Junior College
Denise Corbett, East Carolina University

Carlos C. Corona, San Antonio College
Theodore C. Coskey, South Seattle Community College
Donna Costello, Plano Senior High School
Paul Crittenden, University of Nebraska at Lincoln
John Davenport, East Texas State University
Faye Dang, Joliet Junior College
Antonio David, Del Mar College
Stephanie Deacon, Liberty University
Duane E. Deal, Ball State University
Jerry DeGroot, Purdue North Central
Timothy Deis, University of WisconsinPlatteville
Joanna DelMonaco, Middlesex Community College
Vivian Dennis, Eastfield College
Deborah Dillon, R. L. Turner High School
Guesna Dohrman, Tallahassee Community College
Cheryl Doolittle, Iowa State University
Karen R. Dougan, University of Florida
Jerrett Dumouchel, Florida Community College at Jacksonville
Louise Dyson, Clark College
Paul D. East, Lexington Community College
Don Edmondson, University of Texas-Austin
Erica Egizio, Lewis University
Laura Egner, Joliet Junior College
Jason Eltrevoog, Joliet Junior College
Christopher Ennis, University of Minnesota
Kathy Eppler, Salt Lake Community College
Ralph Esparza, Jr., Richland College
Garret J. Etgen, University of Houston
Scott Fallstrom, Shoreline Community College
Pete Falzone, Pensacola Junior College
W.A. Ferguson, University of Illinois-Urbana/ Champaign
Iris B. Fetta, Clemson University
Mason Flake, student at Edison Community College
Timothy W. Flood, Pittsburgh State University
Robert Frank,Westmoreland County Community College
Merle Friel, Humboldt State University
Richard A. Fritz, Moraine Valley Community College
Dewey Furness, Ricke College
Randy Gallaher, Lewis and Clark College
Tina Garn, University of Arizona
Dawit Getachew, Chicago State University
Wayne Gibson, Rancho Santiago College
Robert Gill, University of Minnesota Duluth
Nina Girard, University of Pittsburgh at Johnstown

Sudhir Kumar Goel, Valdosta State University
Adrienne Goldstein, Miami Dade College, Kendall Campus
Joan Goliday, Sante Fe Community College
Lourdes Gonzalez, Miami Dade College, Kendall Campus
Frederic Gooding, Goucher College
Donald Goral, Northern Virginia Community College
Sue Graupner, Lincoln Public Schools
Mary Beth Grayson, Liberty University
Jennifer L. Grimsley, University of Charleston
Ken Gurganus, University of North Carolina
James E. Hall, University of WisconsinMadison
Judy Hall, West Virginia University
Edward R. Hancock, DeVry Institute of Technology
Julia Hassett, DeVry Institute-Dupage
Christopher Hay-Jahans, University of South Dakota
Michah Heibel, Lincoln Public Schools
LaRae Helliwell, San Jose City College
Celeste Hernandez, Richland College
Gloria P. Hernandez, Louisiana State University at Eunice
Brother Herron, Brother Rice High School
Robert Hoburg, Western Connecticut State University
Lynda Hollingsworth, Northwest Missouri State University
Charla Holzbog, Denison High School
Lee Hruby, Naperville North High School
Miles Hubbard, St. Cloud State University
Kim Hughes, California State College-San Bernardino
Ron Jamison, Brigham Young University
Richard A. Jensen, Manatee Community College
Glenn Johnson, Middlesex Community College
Sandra G. Johnson, St. Cloud State University
Tuesday Johnson, New Mexico State University
Susitha Karunaratne, Purdue University North Central
Moana H. Karsteter, Tallahassee Community College
Donna Katula, Joliet Junior College
Arthur Kaufman, College of Staten Island
Thomas Kearns, North Kentucky University
Jack Keating, Massasoit Community College
Shelia Kellenbarger, Lincoln Public Schools

Rachael Kenney, North Carolina State University
Debra Kopcso, Louisiana State University
Lynne Kowski, Raritan Valley Community College
Yelena Kravchuk, University of Alabama at Birmingham
Keith Kuchar, Manatee Community College
Tor Kwembe, Chicago State University
Linda J. Kyle, Tarrant Country Jr. College
H.E. Lacey, Texas A \& M University

Harriet Lamm, Coastal Bend College
James Lapp, Fort Lewis College
Matt Larson, Lincoln Public Schools
Christopher Lattin, Oakton Community College
Julia Ledet, Lousiana State University
Adele LeGere, Oakton Community College
Kevin Leith, University of Houston
JoAnn Lewin, Edison College
Jeff Lewis, Johnson County Community College
Janice C. Lyon, Tallahassee Community College
Jean McArthur, Joliet Junior College
Virginia McCarthy, Iowa State University
Karla McCavit, Albion College
Michael McClendon, University of Central Oklahoma
Tom McCollow, DeVry Institute of Technology
Marilyn McCollum, North Carolina State University
Jill McGowan, Howard University
Will McGowant, Howard University
David McGuire, Joliet Junior College
Angela McNulty, Joliet Junior College
Laurence Maher, North Texas State University
Jay A. Malmstrom, Oklahoma City Community College
Rebecca Mann, Apollo High School
Lynn Marecek, Santa Ana College
Sherry Martina, Naperville North High School
Alec Matheson, Lamar University
Nancy Matthews, University of Oklahoma
James Maxwell, Oklahoma State UniversityStillwater
Marsha May, Midwestern State University
James McLaughlin, West Chester University
Judy Meckley, Joliet Junior College
David Meel, Bowling Green State University
Carolyn Meitler, Concordia University
Samia Metwali, Erie Community College
Rich Meyers, Joliet Junior College
Eldon Miller, University of Mississippi
James Miller, West Virginia University
Michael Miller, Iowa State University
Kathleen Miranda, SUNY at Old Westbury
Chris Mirbaha, The Community College of Baltimore County
Val Mohanakumar, Hillsborough Community College
Thomas Monaghan, Naperville North High School
Miguel Montanez, Miami Dade College, Wolfson Campus

Maria Montoya, Our Lady of the Lake University
Susan Moosai, Florida Atlantic University
Craig Morse, Naperville North High School
Samad Mortabit, Metropolitan State University
Pat Mower, Washburn University
A. Muhundan, Manatee Community College

Jane Murphy, Middlesex Community College
Richard Nadel, Florida International University
Gabriel Nagy, Kansas State University
Bill Naegele, South Suburban College
Karla Neal, Lousiana State University
Lawrence E. Newman, Holyoke Community College
Dwight Newsome, Pasco-Hernando Community College
Denise Nunley, Maricopa Community Colleges
James Nymann, University of Texas-El Paso
Mark Omodt, Anoka-Ramsey Community College
Seth F. Oppenheimer, Mississippi State University
Leticia Oropesa, University of Miami
Linda Padilla, Joliet Junior College
E. James Peake, Iowa State University

Kelly Pearson, Murray State University
Dashamir Petrela, Florida Atlantic University
Philip Pina, Florida Atlantic University
Michael Prophet, University of Northern Iowa
Laura Pyzdrowski, West Virginia University
Neal C. Raber, University of Akron
Thomas Radin, San Joaquin Delta College
Aibeng Serene Radulovic, Florida Atlantic University
Ken A. Rager, Metropolitan State College
Kenneth D. Reeves, San Antonio College
Elsi Reinhardt, Truckee Meadows Community College
Jose Remesar, Miami Dade College, Wolfson Campus
Jane Ringwald, Iowa State University
Stephen Rodi, Austin Community College
William Rogge, Lincoln Northeast High School
Howard L. Rolf, Baylor University
Mike Rosenthal, Florida International University
Phoebe Rouse, Lousiana State University
Edward Rozema, University of Tennessee at Chattanooga
David Ruffatto, Joliet Junior College
Dennis C. Runde, Manatee Community College
Alan Saleski, Loyola University of Chicago
Susan Sandmeyer, Jamestown Community College
Brenda Santistevan, Salt Lake Community College
Linda Schmidt, Greenville Technical College
Ingrid Scott, Montgomery College
A.K. Shamma, University of West Florida

Martin Sherry, Lower Columbia College
Carmen Shershin, Florida International University

Tatrana Shubin, San Jose State University
Anita Sikes, Delgado Community College
Timothy Sipka, Alma College
Charlotte Smedberg, University of Tampa
Lori Smellegar, Manatee Community College
Gayle Smith, Loyola Blakefield
Leslie Soltis, Mercyhurst College
John Spellman, Southwest Texas State University
Karen Spike, University of North Carolina
Rajalakshmi Sriram, Okaloosa-Walton Community College
Katrina Staley, North Carolina Agricultural and Technical State University
Becky Stamper, Western Kentucky University
Judy Staver, Florida Community College-South
Neil Stephens, Hinsdale South High School
Sonya Stephens, Florida A\&M Univeristy
Patrick Stevens, Joliet Junior College
John Sumner, University of Tampa
Matthew TenHuisen, University of North Carolina, Wilmington
Christopher Terry, Augusta State University
Diane Tesar, South Suburban College
Tommy Thompson, Brookhaven College
Martha K. Tietze, Shawnee Mission Northwest High School
Richard J. Tondra, Iowa State University
Suzanne Topp, Salt Lake Community College
Marilyn Toscano, University of Wisconsin, Superior
Marvel Townsend, University of Florida
Jim Trudnowski, Carroll College
Robert Tuskey, Joliet Junior College
Mihaela Vajiac, Chapman University-Orange
Richard G. Vinson, University of South Alabama
Jorge Viola-Prioli, Florida Atlantic University
Mary Voxman, University of Idaho
Jennifer Walsh, Daytona Beach Community College
Donna Wandke, Naperville North High School
Timothy L.Warkentin, Cloud County Community College
Hayat Weiss, Middlesex Community College
Kathryn Wetzel, Amarillo College
Darlene Whitkenack, Northern Illinois University
Suzanne Williams, Central Piedmont Community College
Larissa Williamson, University of Florida
Christine Wilson, West Virginia University
Brad Wind, Florida International University
Anna Wiodarczyk, Florida International University
Mary Wolyniak, Broome Community College
Canton Woods, Auburn University
Tamara S. Worner, Wayne State College
Terri Wright, New Hampshire Community Technical College, Manchester
George Zazi, Chicago State University
Steve Zuro, Joliet Junior College

STUDENT RESOURCES
- Student Solutions Manual
ISBN: 0-321-78498-7; 978-0-321-78498-8
Fully worked solutions to odd-numbered exercises.

- Algebra Review

ISBN: 0-13-148006-5; 978-0-13-148006-3
Four chapters of Intermediate Algebra review, perfect for a slower-paced course or for individual review.

- Video Resources-video clips of Michael Sullivan, III, working key book examples. Optional English and Spanish subtitles are available. These videos are available in MyMathLab ${ }^{\circledR}$.
- Chapter Test Prep Videos-provide step-by-step solutions to all exercises from the Chapter Test. These videos provide guidance and support for students when preparing for an exam. Optional English and Spanish subtitles are available. The Chapter Test Prep videos are available in MyMathLab ${ }^{\circledR}$ or on YouTube (go to http://www.youtube. com/SullivanATEGU6e).

INSTRUCTOR RESOURCES

- Annotated Instructor's Edition

ISBN: 0-321-78506-1; 978-0-321-78506-0
Provides the answers to all problems right on the page where they appear. Longer answers are in the back of the book. Sample homework assignments are pre-selected by the authors for each section. They are indicated by a blue underline within the exercise set, and are assignable in MathXL ${ }^{\circledR}$ and MyMathLab ${ }^{\circledR}$.

- Instructor's Solutions Manual

Fully worked solutions to all end-of-section exercises, Chapter Review exercises, Cumulative Review exercises, Chapter Test exercises and Chapter Projects. Available within your MyMathLab course or for download through www.pearsonhighered.com/irc

- TestGen ${ }^{\circledR}$

TestGen ${ }^{\circledR}$ (www.pearsoned.com/testgen) enables instructors to build, edit, and print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same question or test with the click of a button. Instructors can also modify test bank questions or add new questions. The software and testbank are available for download from Pearson Education's online catalog. Available within your MyMathLab course or for download through www.pearsonhighered.com/irc

- Test Item File

A printed test bank derived from TestGen. Available within your MyMathLab course or for download through www. pearsonhighered.com/irc

- PowerPoint Lecture Slides

Fully editable slides that follow the textbook. Project in class or post to a website in an online course. Available within your MyMathLab course or for download through www.pearsonhighered.com/irc

- Mini Lecture Notes

These include additional examples and helpful teaching tips, by section. Available within your MyMathLab course or for download through www.pearsonhighered.com/irc

- Online Worksheets

Worksheets created by the authors to offer extra practice exercises for every chapter of the text with space for students to show their work. Available within your MyMathLab course or for download through www.pearsonhighered.com/irc

- Online Chapter Projects

Additional projects that let students apply what was learned in the chapter. Available within your MyMathLab course or for download through www.pearsonhighered.com/irc

TECHNOLOGY RESOURCES

MyMathLab ${ }^{\circ}$ Online Course (access code required)

MyMathLab delivers proven results in helping individual students succeed. It provides engaging experiences that personalize, stimulate, and measure learning for each student. And, it comes from a trusted partner with educational expertise and an eye on the future.
To learn more about how MyMathLab combines proven learning applications with powerful assessment, visit www.mymathlab.com or contact your Pearson representative.

NEW! Resources for Sullivan/Sullivan, Algebra \& Trigonometry Enhanced with Graphing Utilities, 6e

- Author Solves It videos feature author Michael Sullivan, III, solving MathXL ${ }^{\circledR}$ exercises typically requested by students for more explanation or tutoring. These videos are a result of Sullivan's classroom experiences and in teaching online.
- Sample homework assignments, pre-selected by the authors, are indicated by a blue underline within the end-of-section exercise sets in the Annotated Instructor's Edition and are assignable in MyMathLab ${ }^{\circledR}$.
- Prebuilt quizzes for every "Are You Prepared?" exercise will test your retention of the prerequisite material you will need to complete the section.
- Prebuilt quizzes for every Concept and Vocabulary exercise will test your understanding of key definitions and concepts in the current section.
- Online Worksheets created by the authors to help student review and practice key skills to prepare for exams.
- Interactive Figures are now available, enabling users to manipulate figures to bring hard-to-convey math concepts to life.
- Author in Action videos feature author Michael Sullivan, III, delivering in-class lectures and interacting with a live student audience. Students have access to a master teacher regardless of where and when they are studying.

To learn more about the Sullivan Enhanced with Graphing Utilities series and innovative MyMathLab resources specific to your Sullivan text, visit http://www.pearsonhighered.com/SullivanEGUinfo or contact your Pearson representative.

MyMathLab ${ }^{\circ}$ Ready to Go Course (access code required)

These new Ready to Go courses provide students with all the same great MyMathLab features that you're used to, but make it easier for instructors to get started. Each course includes pre-assigned homeworks and quizzes to make creating your course even simpler. Ask your Pearson representative about the details for this particular course or to see a copy of this course.

MathXL' Online Course (access code required)

MathXL ${ }^{\circledR}$ is the homework and assessment engine that runs MyMathLab. (MyMathLab is MathXL plus a learning management system.) With MathXL, instructors can:

- Create, edit, and assign online homework and tests using algorithmically generated exercises correlated at the objective level to the textbook.
- Create and assign their own online exercises and import TestGen tests for added flexibility.
- Maintain records of all student work tracked in MathXL's online gradebook.

With MathXL, students can:

- Take chapter tests in MathXL and receive personalized study plans and/or personalized homework assignments based on their test results.
- Use the study plan and/or the homework to link directly to tutorial exercises for the objectives they need to study.
- Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website at www.mathxl.com, or contact your Pearson representative.

This page intentionally left blank

Applications Index

Acoustics

amplifying sound, 497
loudness of sound, 448, 499
loudspeaker, 706
tuning fork, 706
whispering galleries, 791

Aerodynamics

modeling aircraft motion, 771

Aeronautics

Challenger disaster, 485

Agriculture

farm management, 928
farm workers in U.S., 485-486
field enclosure, 912
grazing area for cow, 697
minimizing cost, 928
removing stump, 759
watering a field, 118, 203

Air travel

bearing of aircraft, 674
cost of trans-Atlantic, 218, 226-227
distance between two planes, 266
frequent flyer miles, 684
holding pattern, 629
intersection point for two planes, 266, 834
parking at O'Hare International
Airport, 249
revising a flight plan, 691
speed and direction of aircraft, 754-755, 758

Applet(s)

Amplitude, 575
"Circle: the role of the center," 195
"Circle: the role of the radius," 195
horizontal shift, 264
horizontal stretch, 264
Multiplicity, 345
origin symmetry, 171
Period, 575
reflection about the x-axis, 264
reflection about the y-axis, 264
Secant Line Min Point, 241
Secant Line Not Min Point, 241
slope, 187
Trace Cosine Curve, 574
Trace Sine Curve, 574
Vectors, 760
vertical shift, 264
vertical stretch, 264
x-axis symmetry, 171
y-axis symmetry, 171

Archaeology

age of ancient tools, 478-479
age of fossil, 484
age of tree, 484
date of prehistoric man's death, 498

Architecture

brick staircase, 955, 977
Burj Khalifa building, 31
floor design, 953-954, 977
football stadium seating, 955
Freedom Tower, 538
mosaic design, 955,977
Norman window, 38, 314
parabolic arch, 314
racetrack design, 793
special window, 314
stadium construction, 955
window design, 314
window dimensions, 118

Area. See also Geometry

of Bermuda Triangle, 697
of building ground, 696-697
under a curve, 614-615
of isosceles triangle, 659
of sector of circle, 514
of segment of circle, 708

Art

fine decorative pieces, 536
framing a painting, 160

Astronomy

angle of elevation of Sun, 673
distance from Earth to its moon, 29
distances of planets from Sun, 949
light-year, 30
planetary orbits, 791
Earth, 794
Jupiter, 794
Mars, 794
Mercury, 822
Neptune, 839
Pluto, 794, 839

Aviation

modeling aircraft motion, 771
orbital launches, 853

Biology

alcohol and driving, 444, 449
bacterial growth, 476-477, 490
E-coli, 240, 279
blood types, 985-986
bone length, 322-323
cricket chirp rate and temperature, 316
healing of wounds, 433-434, 448
maternal age versus Down
syndrome, 294
yeast biomass as function
of time, 489-490

Business

advertising, 294, 323
automobile production, 405, 869
bank failures, 486
blending coffee, 143, 160
candy bar size, 118
car rentals, 285-286
checkout lines, 1004
cigarette exports, 491
clothing store, 1006
cookie orders, 932-933
cost
of can, 381, 384
of charter bus, 160
of commodity, 406
of manufacturing, $29,143,227,344$, 390, 922
marginal, 305-306, 322
minimizing, 322, 928
of printing textbooks, 340-341
of production, 239, 406, 895, 933
of theater ticket per student, 391
of transporting goods, 250
cost equation, 185, 199
cost function, 286-287
average, 223
Dell personal computer price and demand, 491
demand
for candy, 199
for jeans, 293
for PCs, 491
demand equation, $322,324,396$
depreciation, 398
discounts, 108, 406
drive-thru rate
at Burger King, 429-430
at Citibank, 434, 448
at McDonald's, 434
equipment depreciation, 963
expense computation, 144
Jiffy Lube's car arrival rate, 434, 448
managing a meat market, 928
mixing candy, 143
mixing nuts, 143
orange juice production, 869
precision ball bearings, 29
price markup, 108
of new car, 156
price vs. quantity demanded, 287
product design, 929
production scheduling, 928
product promotion, 186
profit, 895
cigar company, 263
maximizing, 926-927, 928, 929
profit function, 219
rate of return on, 473
restaurant management, 853
revenue, $143,305,320$
advertising and, 294
airline, 929
of clothing store, 884
daily, 306
from digital music, 263
maximizing, 305, 312-313
monthly, 306
theater, 854
revenue equation, 199
RV rental, 323
salary, 955
gross, 218
increases in, 963, 977
sales
commission on, 156
of movie theater ticket, 841, 845-846, 853
net, 97
salvage value, 498
straight-line depreciation, 282-283, 286
supply and demand, 283-284, 286
tax, 390
theater attendance, 108
toy truck manufacturing, 922
transporting goods, 922
truck rentals, 185, 287
unemployment, 1007
wages
of car salesperson, 185-186
hourly, 105, 108
Word users, 485

Calculus

area under a curve, 264, 614-615
area under graph, 239
carrying a ladder around a corner, 629
maximizing rain gutter construction, 658-659
projectile motion, 629
Simpson's rule, 314

Carpentry. See also Construction

pitch, 187

Chemistry, 107

alpha particles, 807
decomposition reactions, 484
drug concentration, 383
gas laws, 200
pH, 447
purity of gold, 144
radioactive decay, $483,484,491,499$
radioactivity from Chernobyl, 484
reactions, 314
salt solutions, 144, 160
sugar molecules, 144
volume of gas, 155

Combinatorics

airport codes, 987
binary codes, 1006
birthday permutations, 989, 993, 1000-1001, 1005, 1006
blouses and skirts combinations, 985
book arrangements, 993
box stacking, 993
code formation, 993
combination locks, 994
committee formation, 991, 993, 994, 1006
Senate committees, 994
flag arrangement, 992, 1006
letter codes, 987
license plate possibilities, 993, 1006, 1007
lining up people, 988, 993
number formation, 985, 993, 994, 1007
objects selection, 994
seating arrangements, 1006
shirts and ties combinations, 985
telephone numbers, 1006
two-symbol codewords, 984
word formation, 991-992, 994, 1007

Communications

cell phone plan, 205, 227
cell phone service, 249,275
cell phone usage, 492
installing cable TV, 269
long distance, 287
comparing phone companies, 322
phone charges, 286
satellite dish, 780, 782
smart phones, 108
spreading of rumors, 434,448
Touch-Tone phones, 663, 706

Computers and computing

Dell PCs, 491
graphics, 758
households owning PCs, 485
laser printers, 143
smart phones, 108
Word users, 485

Construction

of border around a garden, 119
of border around a pool, 118-119
of box, 115-116, 118, 912
closed, 273
open, 269
of brick staircase, 977
of can, 394
of coffee can, 145
of cylindrical tube, 912
of enclosures
around garden, 144
around pond, 144
maximizing area of, 309, 313, 322
of fencing, 309, 313, 322, 912
minimum cost for, 383
of flashlight, 782
of headlight, 782
of highway, 538, 684, 708
installing cable TV, 269
patio dimensions, 119
pitch of roof, 674
of rain gutter, 314, 531-532, 658-659
of ramp, 683
access ramp, 186
of rectangular field enclosure, 313
of stadium, 314, 955
of steel drum, 384
of swimming pool, 38, 39
of swing set, 692
of tent, 696
TV dish, 782
vent pipe installation, 793

Crime

incomve vs. rate of, 493

Cryptography

matrices in, 895

Decorating

Christmas tree, 32-33

Demographics

birth rate(s), 316, 978-979
of unmarried women, 306
death rates, 978-979
diversity index, 447-448
divorced population, 311-312
marital status, 986
mosquito colony growth, 483
population. See Population
poverty rates, 394
rabbit colony growth, 948

Design

of awning, 684-685
of box with minimum surface area, 383-384
of fine decorative pieces, 536
of Little League Field, 515-516
of water sprinkler, 514

Direction

of aircraft, 754-755, 758
compass heading, 759
for crossing a river, 758-759
of fireworks display, 806
of lightning strikes, 806
of motorboat, 758-759
of swimmer, 769-770

Distance

Bermuda Triangle, 38
bicycle riding, 228
from Chicago to Honolulu, 615
circumference of Earth, 515
between cities, 509-510, 514
between Earth and Mercury, 685
between Earth and Venus, 685
from Earth to a star, 674
of explosion, 807
height
of aircraft, 683, 685
of bouncing ball, 963,977
of bridge, 683
of building, 674
of cloud, 533-534
of CN Tower, 537
of Eiffel Tower, 537
of embankment, 674
of Ferris Wheel rider, 628
of Freedom Tower, 538
of Great Pyramid of Cheops, 38, 685
of helicopter, 708
of hot-air balloon, 537
of Lincoln's caricature on
Mt. Rushmore, 537
of mountain, 680, 683
of Mt. Everest, 30
of statue on a building, 534
of tower, 537
of tree, 683
of Washington Monument, 537
of Willis Tower, 674
from home, 228
from Honolulu to Melbourne,
Australia, 615
of hot-air balloon
to airport, 709
from intersection, 97
from intersection, 266, 268
length
of guy wire, 537, 539, 691
of lake, 597
of mountain trail, 537
of ski lift, 683
limiting magnitude of telescope, 497-498
to the Moon, 683
pendulum swings, 961-962, 963
to plateau, 537
across a pond, 537
range of airplane, 144
reach of ladder, 537
of rotating beacon, 582
at sea, 684
of search and rescue, 160
to shore, 537, 597, 684
between skyscrapers, 674
sound to measure, 135-136
of storm, 159
to tower, 685
traveled by wheel, 38
between two moving vehicles, 96-97
toward intersection, 268
between two objects, 537
visibility of Gibb's Hill Lighthouse beam, 39, 671-672, 675
visual, 39
walking, 228
width
of gorge, 536
of Mississippi River, 674
of river, 532-533, 597

Economics

Consumer Price Index (CPI), 474
Dell personal computer price and demand, 491
demand equations, 396
federal stimulus package of 2009, 473
inflation, 473-474
IS-LM model in, 853-854
marginal propensity to consume, 964
multiplier, 964
participation rate, 219
per capita federal debt, 473
poverty rates, 394
poverty threshold, 97
relative income of child, 896
unemployment, 1007

Education

age distribution of community college, 1007
college costs, $473,895,948$
computing grades, 156
degrees awarded, 983
doctorates, 1004
faculty composition, 1005
field trip, 391
funding a college education, 498
grades, 108
learning curve, 434, 448
maximum level achieved, 934-935
multiple-choice test, 993
spring break, 928,945
student loan, 274
interest on, 895
true/false test, 993
video games and grade-point average, 293

Electricity, 107

alternating current (ac), 598, 649
alternating current (ac) circuits, 573, 591
alternating current (ac) generators, 573-574
charging a capacitor, 706
cost of, 247-248
current in $R C$ circuit, 435
current in $R L$ circuit, 435, 448
impedance, 128
Kirchhoff's Rules, 854, 869
parallel circuits, 128
resistance in, 374
rates for, 156, 186
resistance, 70, 72, 200, 203, 374
voltage
foreign, 29
household, 155
U.S., 29

Electronics

comparing TVs, 119
loudspeakers, 706
microphones, 171
sawtooth curve, 659, 706

Energy

nuclear power plant, 807
solar, 171, 766
solar heat, 782
thermostat control, 263

Engineering

bridges
clearance, 574
Golden Gate, 310-311
parabolic arch, 322, 783
semielliptical arch, 793, 837
suspension, 314, 782
crushing load, 136
drive wheel, 709
electrical, 526
Gateway Arch (St. Louis), 783
grade of road, 187
horsepower, 200
lean of Leaning Tower of Pisa, 684
maximum weight supportable by pine, 197
moment of inertia, 663
piston engines, 536
product of inertia, 659
road system, 722
rods and pistons, 692
safe load for a beam, 200
searchlight, $637,782,837$
whispering galleries, 793

Entertainment

cable subscribers, 493
Demon Roller Coaster customer rate, 434
movie theater, 614
theater revenues, 854

Environment

lake pollution control laws, 948
oil leakage, 405
Finance, 107. See also Investment(s)
balancing a checkbook, 29
bank failures, 486
bills in wallet, 1007
clothes shopping, 934
computer system purchase, 473
cost
of car, 108
of car rental, 250
of cell phone minutes, 227
of college, 473, 948
of driving a car, 185
of electricity, 247-248
of fast food, 853
minimizing, 322,383
of natural gas, 249, 250
of pizza, 107-108
of printing textbooks, 340-341
of trans-Atlantic travel, 218, 226-227
of triangular lot, 696
cost equation, 199
cost function, 286-287
cost minimization, 305-306
credit cards
debt, 947
interest on, 473
payment, 250, 947
depreciation, 433, 493-494
of car, 465, 501
discounts, 406
division of money, 107, 138-139
electricity rates, 186
federal debt, 239-240
federal stimulus package of 2009, 473
financial planning, 138-139, 159, 853, 865-866, 868, 869, 920, 922, 923
foreign exchange, 406
funding a college education, 498
future value of money, 344-345
gross salary, 218
growth of investment, 487-488
income versus crime rate, 493
inheritance, 107
life cycle hypothesis, 315
loans, 143
amortization schedule, 162
car, 947-948
home, 948
interest on, 138, 159, 161, 274, 895
repayment of, 473
student, 895
mortgages
fees, 250
interest rates on, 473, 474-475
payments, 196, 199, 202, 946
second, 473
phone charges, long distance, 287
price appreciation of homes, 473
prices of fast food, 854
price $v s$. quantity demanded, 287
refunds, 853
revenue equation, 199
revenue maximization, 305, 307-308, 312-313
rich man's promise, 964
salary options, 964-965
sales commission, 156
saving
for a car, 473
for spring break, 945
savings accounts interest, 473
selling price, 204
taxes, 286
federal income, 250, 418
luxury, 286
used-car purchase, 473
water bills, 156

Food and nutrition

animal, 929
candy, 292
color mix of candy, 1007
cooler contents, 1007
cooling time of pizza, 484
fast food, 853,854
Girl Scout cookies, 1004
hospital diet, 854, 868
ice cream, 929
"light" foods, 156
number of possible meals, 983-984
pig roasts, 484-485
raisins, 292-293
warming time of beer stein, 484

Forestry

wood product classification, 482-483

Games

die rolling, 1007
grains of wheat on a chessboard, 964
Powerball, 1007

Gardens and gardening. See also Landscaping

border around, 119
enclosure for, 144

Geography

area of Bermuda Triangle, 697
area of lake, 696, 708
inclination of hill, 767
inclination of mountain trail, 671, 708

Geology

earthquakes, 449

Geometry

angle between two lines, 649
balloon volume, 405
circle
area of, 142,697
circumference of, 29, 142
inscribed in square, 267
length of chord of, 692
radius of, 912
collinear points, 879
cone volume, 200, 406
cube
length of edge of, 358
surface area of, 29
volume of, 29
cylinder
inscribing in cone, 268-269
inscribing in sphere, 268
volume of, 200, 406
Descartes's method of equal roots, 912-913
equation of line, 879
ladder angle, 709
polygon, diagonals of, 119
Pythagorean Theorem, 118
quadrilateral area, 710
rectangle
area of, 29, 218, 265-266
dimensions of, 108, 118, 159, 912
inscribed in semicircle, 267, 659
perimeter of, 29
pleasing proportion for, 160
semicircle inscribed in, 267, 268
semicircle area, 696, 710
sphere
surface area of, 29
volume of, 29
square
area of, 38, 143
perimeter of, 143
surface area
of balloon, 405
of cube, 29
of sphere, 29
triangle
area of, 29, 696, 697, 710, 879
circumscribing, 686
equilateral, 29
inscribed in circle, 268
isosceles, 218, 710, 912
lengths of the legs, 160
Pascal's, 949
right, 536, 673
sides of, 710

Government

federal debt, 239-240
federal deficit, 498
federal income tax, 219, 250, 418
federal stimulus package of 2009, 473
federal tax withholding, 156
first-class mail, 251
per capita federal debt, 473
Health. See also Medicine
age versus total cholesterol, 493
blood pressure, 628
cigarette use among teens, 186
exercising, 156
expenditures on, 219
heartbeats during exercise, 280-281
ideal body weight, 418
life cycle hypothesis, 315
life expectancy, 155
Home improvement. See also
Construction
painting a house, 854

Housing. See also Real estate

apartment rental, 315
number of rooms in, 218
price appreciation of homes, 473

Investment(s), 104-105, 107,

 143, 159, 499annuity, 944-945
in bonds, 929
Treasuries, 868, 869, 920, 922, 923
zero-coupon, 470, 474
in CDs, 929
compound interest on, 466, 467-468, 469, 472
diversified, 854
doubling of, 471, 474
finance charges, 473
in fixed-income securities, 474, 929
401K, 977
growth of, 487-488
rate of, 472-473

IRA, 473, 948
Education, 948
Roth, 948
money market account, 469
return on, 472-473, 928, 929
savings account, 469
in stock
analyzing, 325
appreciation, 473
NASDAQ stocks, 993
NYSE stocks, 993
portfolios of, 986
price of, 964
time to reach goal, 473, 474
tripling of, 471, 474

Landscaping. See also Gardens
 and gardening

height of tree, 683
removing stump, 759
tree planting, 868
watering lawn, 514

Law and law enforcement

motor vehicle thefts, 1004
violent crimes, 219

Leisure and recreation

cable TV, 269
community skating rink, 274
Ferris Wheel, 194, 515, 628, 685, 706
field trip, 391
video games and grade-point
average, 293

Marketing

Dell personal computer price and demand, 491

Measurement

optical methods of, 637
of rainfall, 766

Mechanics, 107. See also Physics

Medicine. See also Health

age versus total cholesterol, 493
blood pressure, 628
drug concentration, 239, 383
drug medication, 434, 448
healing of wounds, 433-434, 448
spreading of disease, 499

Meteorology

weather balloon height and atmospheric pressure, 488-489

Miscellaneous

banquet seating, 928
bending wire, 912
biorhythms, 574
carrying a ladder around a corner, 526, 582, 629
citrus ladders, 955
coffee container, 501
cross-sectional area of beam, 218, 226
curve fitting, $853,868,932$
diameter of copper wire, 30
drafting error, 97
Mandelbrot sets, 746
motor, 30
pet ownership, 1004
reading books, 156
rescue at sea, 680-681, 683
surface area of balloon, 405
surveillance satellites, 675
volume of balloon, 405
wire enclosure area, 268
Mixtures. See also Chemistry
blending coffees, 139-140, 143, 160, 922, 932
blending teas, 143
cement, 144
mixed nuts, $143,853,922,933$
mixing candy, 143
water and antifreeze, 144

Money. See Finance; Investment(s)

Motion, 706-707. See also Physics
catching a train, 837-838
on a circle, 514
of Ferris Wheel rider, 628
of golf ball, 226
minute hand of clock, 513, 597
objects approaching intersection, 834
of pendulum, 707, 709
revolutions of circular disk, 38
simulating, 828-829
tortoise and the hare race, 912
uniform, 140-141, 143, 834

Motor vehicles

alcohol and driving, 444, 449
approaching intersection, 834
automobile production, 405, 869
average car speed, 145
brake repair with tune-up, 1007
braking load, 766, 770
cost of driving a car, 185
crankshafts, 684
depreciation, 398, 465, 493-494, 501
with Global Positioning System
(GPS), 498
loans for, 947-948
markup of new car, 156
runaway car, 320
speed and miles per gallon, 315-316
spin balancing tires, 515
stopping distance, 306,418
used-car purchase, 473

Music

revenues from, 263

Navigation

avoiding a tropical storm, 691
bearing, 672, 690
of aircraft, 674
of ship, 674
commercial, 683-684
compass heading, 759
crossing a river, 758-759
error in
correcting, 688-689, 708
time lost due to, 684
rescue at sea, 680-681, 683
revising a flight plan, 691

Oceanography

tides, 592

Optics

angle of refraction, 629-630
bending light, 630
index of refraction, 629-630
intensity of light, 200
laser beam, 673
laser projection, 659
lensmaker's equation, 72
light obliterated through glass, 433
mirrors, 807
reflecting telescope, 783

Pediatrics

height $v s$. head circumference, 293, 418

Pharmacy

vitamin intake, 853,869

Photography

camera distance, 538

Physics, 107

angle of elevation of Sun, 673
bouncing balls, 977
braking load, 766
damped motion, 702-703, 709
diameter of atom, 30
Doppler effect, 383
effect of elevation on weight, 227
falling objects, 199
force, 143, 758
to hold a wagon on a hill, 764
resultant, 758
of wind on a window, 198, 200
gravity, 374, 391
on Earth, 218, 418-419
on Jupiter, 218
harmonic motion, 700-701, 709
heat loss through a wall, 197
heat transfer, 629
horsepower, 200
inclination of mountain trail, 671
intensity of light, 159-160, 200
Kepler's Third Law of Planetary Motion, 202
kinetic energy, 143, 200
maximum weight supportable by pine, 197
missile trajectory, 325
moment of inertia, 663
motion of object, 700-701
Newton's law, 199
pendulum motion, 136, 514, 707, 709, 961-962
period, 263, 419
simple pendulum, 199
pressure, 143, 199
product of inertia, 659
projectile motion, 118, 309-310, 313, 535, 549, 629, 653-654, 659, 663, 827, 833-834, 838
artillery, 320, 620, 835
thrown object, 833
safe load for a beam, 200
simulating motion, 828-829
sound
to measure distance, 135-136
speed of, 156
static equilibrium, 755-756, 759, 770
stress of materials, 200
stretching a spring, 199, 709
tension, 755-756, 759, 770
thrown object, 160
ball, 315, 320
truck pulls, 759
uniform motion, 140-141, 143, 160, 268, 834, 837-838
velocity down inclined planes, 80
vertically propelled object, 320
vibrating string, 199
wavelength of visible light, 30
weight, 200, 202
of a boat, 758
of a car, 758
of a piano, 755
work, 143

Play

swinging, 710
wagon pulling, 758, 765

Population. See also Demographics

bacterial, 483, 485, 490
decline in, 483-484
E-coli growth, 240, 279
of endangered species, 485
of fruit fly, 481-482
as function of age, 218
growth in, 483, 485
insect, 374,483
of trout, 948
of United States, 464, 491-492, 978
of world, 465, 492, 498, 936

Probability

checkout lines, 1004
classroom composition, 1004
"Deal or No Deal" TV show, 980
exponential, 429-430, 434, 448
household annual income, 1004
Monty Hall Game, 1008
Poisson, 434
"Price is Right" games, 1004
of same birthday in roomful of people, 486
of winning a lottery, 1005

Psychometrics

IQ tests, 156

Publishing

textbook printing cost, 340-341

Pyrotechnics

fireworks display, 806
Rate. See also Speed
of car, 514
catching a bus, 833-834
catching a train, 833
current of stream, 853
of emptying
oil tankers, 144
a pool, 145
a tub, 144-145
to fill tank, 160
to keep up with the Sun, 515
revolutions per minute
of bicycle wheels, 514
of pulleys, 516
speed
average, 145
of current, 143
of cyclists going in opposite
directions, 145
of motorboat, 143
of moving walkways, 143
per gallon rate and, 315-316
of plane, 144,145
of sound, 156

Real estate

commission, 156
cost of triangular lot, 696
mortgage fees, 250
selling price of, 204
value of, 163

Recreation

bungee jumping, 390-391
Demon Roller Coaster customer rate, 434
online gambling, 1004

Security

security cameras, 673

Seismology

calibrating instruments, 837

Sequences. See also Combinatorics

ceramic tile floor design, 953-954
Drury Lane Theater, 955
football stadium seating, 955
seats in amphitheater, 955

Speed

of aircraft, 758
angular, 514, 597
of current, 515, 933
as function of time, 228, 268
linear, 512
on Earth, 514
of Moon, 514
revolutions per minute of pulley, 514
of rotation of lighthouse beacons, 597
of swimmer, 769-770
of truck, 673
of wheel pulling cable cars, 515
wind, 853

Sports

baseball, 834-835, 994, 1006
diamond, 96
dimensions of home plate, 696
field, 691, 692
Little League, 96, 515-516
on-base percentage, 288-289
stadium, 691
World Series, 994
basketball, 994
free throws, 226, 674-675
granny shots, 226
biathlon, 145
bungee jumping, 390-391
calculating pool shots, 538
cycling, 145
exacta betting, 1007
football, 144, 793, 994
golf, $226,827,834$
distance to the green, 690
sand bunkers, 620
hammer throw, 598-599
Olympic heroes, 145
races, 144, 160, 909-910, 912
relay runners, 1006
swimming, 710, 769-770
tennis, 143

Statistics. See Probability

Surveys

of appliance purchases, 985
data analysis, 982-983, 985
stock portfolios, 986
of summer session attendance, 985
of TV sets in a house, 1004

Temperature

of air parcel, 955
body, 29, 155
conversion of, 406, 418
cooling time of pizza, 484
cricket chirp rate and, 316
measuring, 186
after midnight, 344
monthly, 591-592, 598
of portable heater, 498
relationship between scales, 263
sinusoidal function from, 587-588
of skillet, 498
warming time of beer stein, 484
wind chill factor, 498-499

Time

for beer stein to warm, 484
for block to slide down inclined plane, 535-536
Ferris Wheel rider height as function of, 628
to go from an island to a town, 269
hours of daylight, 396, 502, 589-590, 592-593, 600, 614
for pizza to cool, 484
for rescue at sea, 160
of sunrise, 515, 614
of trip, 526, 536

Transportation

deicing salt, 620
Niagara Falls Incline Railway, 674

Travel. See also Air travel; Navigation

drivers stopped by the police, 500 driving to school, 199
parking at O'Hare International Airport, 249

Volume

of gasoline in tank, 80
of ice in skating rink, 274
of water in cone, 269

Weapons

artillery, 320, 620, 835
cannons, 325

Weather

atmospheric pressure, 433, 448
avoiding a tropical storm, 691
cooling air, 955
hurricanes, 344, 591
lightning and thunder, 159
lightning strikes, 803-804, 806
rainfall measurement, 766
relative humidity, 434
weather satellites, 194
wind chill, 251, 498-499
Work, 765
computing, 764-765, 766, 770
constant rate jobs, 933
pulling a wagon, 765
ramp angle, 767
wheelbarrow push, 758
working together, $142,144,160$

Photo Credits

Chapter R Page 1, Jupiterimages/Brand X Pictures/Thinkstock; Page 31, Hainaultphoto/ Shutterstock.

Chapter 1 Pages 81 and 161, Andy Dean Photography/Shutterstock; Page 108, Design Pics/SuperStock; Page 118, The Crimson Monkey/iStockphoto; Page 155, Nancy R. Cohen/Photodisc/Getty Images; Page 159, Hemera Technologies/ Thinkstock.

Chapter 2 Pages 163 and 204, Andy Dean Photography/Shutterstock; Page 165, Barrett \& MacKay/Glow Images; Page 171, Department of Energy (DOE) Digital Photo Archive; Page186, Tetra Images/Alamy; Page 194, Jasonleehl/Shutterstock.

Chapter 3 Pages 205 and 275, Stephen Coburn/Shutterstock; Page 218, JPL/NASA; Page 226, Exactostock/SuperStock; Page 263, Kenzee/Dreamstime.

Chapter 4 Pages 277 and 325, Peter Morgan/AP Images; Page 314, Sajko/Shutterstock.
Chapter 5 Pages 326 and 396, Formiktopus/Shutterstock; Page 384, Oonal/Shutterstock.
Chapter 6 Pages 398 and 501, Don Hammond/Design Pics, Inc./Alamy; Page 456, Hulton Archive/Getty Images; Page 464, Stockbyte/Thinkstock; Page 465, Transtock/ SuperStock; Page 470, iStockphoto/Thinkstock; Page 485, Jupiterimages/Photos. com/Thinkstock.

Chapter 7 Pages 502 and 600, Nova for Windows/Northern Lights Software Associates (NLSA); Page 514, Ryan McVay/Ditital Vision/Thinkstock; Page 537, Sergey Karpov/Shutterstock; Page 574, Draskovic/Dreamstime.

Chapter 8 Pages 601 and 668, Sebastian Kaulitzki/Exaxion/Stockphoto.
Chapter 9 Pages 669 and 711, Jennifer Thermes/Photodisc/Getty Images; Page 697, Afagundes/Dreamstime; Page 699, iStockphoto/Thinkstock.

Chapter 10 Pages 713 and 771, Igor Marx/iStockphoto; Page 736, North Wind Picture Archives/Alamy; Page 745, Science \& Society Picture Library/Getty Images; Page 756, Hulton Archive/Getty Images.

Chapter 11 Pages 772 and 839, Caltech/JPL/NASA; Page 791, Thomas Barrat/Shutterstock.
Chapter 12 Pages 840 and 935, Stock Connection Blue/Alamy; Page 893, Library of Congress Department of Prints and Photographs [LC-USZ62-46864].

Chapter 13 Pages 936 and 978, Albo/Shutterstock; Page 962, Steven S. Nau/Pearson Education, Inc.

Chapter 14 Pages 980 and 1008, Trae Patton/NBCU Photo Bank/AP Images; Page 1001, iStockphoto/Thinkstock.

Review

Outline

R. 1 Real Numbers
R. 2 Algebra Essentials
R. 3 Geometry Essentials
R. 4 Polynomials
R. 5 Factoring Polynomials
R. 6 Synthetic Division
R. 7 Rational Expressions
R. 8 nth Roots; Rational Exponents
(1) A LOOK AHEAD chapter R, as the title states, contains review material. Your instructor may choose to cover all or part of it as a regular chapter at the beginning of your course or later as a just-in-time review when the content is required. Regardless, when information in this chapter is needed, a specific reference to this chapter will be made so you can review.

R. 1 Real Numbers

PREPARING FOR THIS BOOK Before getting started, read "To the Student" on page xii at the front of this book.

OBJECTIVES 1 Work with Sets (p. 2)
2 Classify Numbers (p. 4)
3 Evaluate Numerical Expressions (p. 8)
4 Work with Properties of Real Numbers (p. 10)

1 Work with Sets

A set is a well-defined collection of distinct objects. The objects of a set are called its elements. By well-defined, we mean that there is a rule that enables us to determine whether a given object is an element of the set. If a set has no elements, it is called the empty set, or null set, and is denoted by the symbol \varnothing.

For example, the set of digits consists of the collection of numbers $0,1,2,3,4,5$, $6,7,8$, and 9 . If we use the symbol D to denote the set of digits, then we can write

$$
D=\{0,1,2,3,4,5,6,7,8,9\}
$$

In this notation, the braces $\}$ are used to enclose the objects, or elements, in the set. This method of denoting a set is called the roster method. A second way to denote a set is to use set-builder notation, where the set D of digits is written as

EXAMPLE 1 Using Set-builder Notation and the Roster Method

(a) $E=\{x \mid x$ is an even digit $\}=\{0,2,4,6,8\}$
(b) $O=\{x \mid x$ is an odd digit $\}=\{1,3,5,7,9\}$

Because the elements of a set are distinct, we never repeat elements. For example, we would never write $\{1,2,3,2\}$; the correct listing is $\{1,2,3\}$. Because a set is a collection, the order in which the elements are listed does not matter. So, $\{1,2,3\},\{1,3,2\},\{2,1,3\}$, and so on, all represent the same set.

If every element of a set A is also an element of a set B, then we say that A is a subset of B and write $A \subseteq B$. If two sets A and B have the same elements, then we say that A equals B and write $A=B$.

For example, $\{1,2,3\} \subseteq\{1,2,3,4,5\}$ and $\{1,2,3\}=\{2,3,1\}$.

DEFINITION

If A and B are sets, the intersection of A with B, denoted $A \cap B$, is the set consisting of elements that belong to both A and B. The union of A with B, denoted $A \cup B$, is the set consisting of elements that belong to either A or B, or both.

EXAMPLE 2 Finding the Intersection and Union of Sets

Let $A=\{1,3,5,8\}, B=\{3,5,7\}$, and $C=\{2,4,6,8\}$. Find:
(a) $A \cap B$
(b) $A \cup B$
(c) $B \cap(A \cup C)$

Solution

(a) $A \cap B=\{1,3,5,8\} \cap\{3,5,7\}=\{3,5\}$
(b) $A \cup B=\{1,3,5,8\} \cup\{3,5,7\}=\{1,3,5,7,8\}$
(c) $B \cap(A \cup C)=\{3,5,7\} \cap[\{1,3,5,8\} \cup\{2,4,6,8\}]$
$=\{3,5,7\} \cap\{1,2,3,4,5,6,8\}=\{3,5\}$
am Now Work problem 13

Usually, in working with sets, we designate a universal set U, the set consisting of all the elements that we wish to consider. Once a universal set has been designated, we can consider elements of the universal set not found in a given set.

DEFINITION

If A is a set, the complement of A, denoted \bar{A}, is the set consisting of all the elements in the universal set that are not in A.*

EXAMPLE 3 Finding the Complement of a Set

If the universal set is $U=\{1,2,3,4,5,6,7,8,9\}$ and if $A=\{1,3,5,7,9\}$, then $\bar{A}=\{2,4,6,8\}$.

It follows from the definition of complement that $A \cup \bar{A}=U$ and $A \cap \bar{A}=\varnothing$. Do you see why?

Figure 1

Figure 2

Figures 3(a), 3(b), and 3(c) use Venn diagrams to illustrate the definitions of intersection, union, and complement, respectively.

Figure 3

(a) $A \cap B$ intersection

(b) $A \cup B$ union

(c) \bar{A} complement

[^0]
2 Classify Numbers

It is helpful to classify the various kinds of numbers that we deal with as sets. The counting numbers, or natural numbers, are the numbers in the set $\{1,2,3,4, \ldots\}$. (The three dots, called an ellipsis, indicate that the pattern continues indefinitely.) As their name implies, these numbers are often used to count things. For example, there are 26 letters in our alphabet; there are 100 cents in a dollar. The whole numbers are the numbers in the set $\{0,1,2,3, \ldots\}$, that is, the counting numbers together with 0 . The set of counting numbers is a subset of the set of whole numbers.

The integers are the set of numbers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

These numbers are useful in many situations. For example, if your checking account has $\$ 10$ in it and you write a check for $\$ 15$, you can represent the current balance as $-\$ 5$.

Each time we expand a number system, such as from the whole numbers to the integers, we do so in order to be able to handle new, and usually more complicated, problems. The integers allow us to solve problems requiring both positive and negative counting numbers, such as profit/loss, height above/below sea level, temperature above/below $0^{\circ} \mathrm{F}$, and so on.

But integers alone are not sufficient for all problems. For example, they do not answer the question "What part of a dollar is 38 cents?" To answer such a question, we enlarge our number system to include rational numbers. For example, $\frac{38}{100}$ answers the question "What part of a dollar is 38 cents?"

DEFINITION

A rational number is a number that can be expressed as a quotient $\frac{a}{b}$ of two integers. The integer a is called the numerator, and the integer b, which cannot be 0 , is called the denominator. The rational numbers are the numbers in the set $\left\{x \left\lvert\, x=\frac{a}{b}\right.\right.$, where a, b are integers and $\left.b \neq 0\right\}$.

Examples of rational numbers are $\frac{3}{4}, \frac{5}{2}, \frac{0}{4},-\frac{2}{3}$, and $\frac{100}{3}$. Since $\frac{a}{1}=a$ for any integer a, it follows that the set of integers is a subset of the set of rational numbers.

Rational numbers may be represented as decimals. For example, the rational numbers $\frac{3}{4}, \frac{5}{2},-\frac{2}{3}$, and $\frac{7}{66}$ may be represented as decimals by merely carrying out the indicated division:
$\frac{3}{4}=0.75 \quad \frac{5}{2}=2.5 \quad-\frac{2}{3}=-0.666 \ldots=-0 . \overline{6} \quad \frac{7}{66}=0.1060606 \ldots=0.1 \overline{06}$
Notice that the decimal representations of $\frac{3}{4}$ and $\frac{5}{2}$ terminate, or end. The decimal representations of $-\frac{2}{3}$ and $\frac{7}{66}$ do not terminate, but they do exhibit a pattern of repetition. For $-\frac{2}{3}$, the 6 repeats indefinitely, as indicated by the ellipsis or the bar over the 6 ; for $\frac{7}{66}$, the block 06 repeats indefinitely, as indicated by the bar over the 06 . It can be shown that every rational number may be represented by a decimal that either terminates or is nonterminating with a repeating block of digits, and vice versa.

On the other hand, some decimals do not fit into either of these categories. Such decimals represent irrational numbers. Every irrational number may be represented by a decimal that neither repeats nor terminates. In other words, irrational numbers cannot be written in the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$.

Irrational numbers occur naturally. For example, consider the isosceles right triangle whose legs are each of length 1. See Figure 4. The length of the hypotenuse is $\sqrt{2}$, an irrational number.

Also, the number that equals the ratio of the circumference C to the diameter d of any circle, denoted by the symbol π (the Greek letter pi), is an irrational number. See Figure 5.

Figure 4

Figure $5 \quad \pi=\frac{C}{d}$

DEFINITION

The set of real numbers is the union of the set of rational numbers with the set of irrational numbers.

Figure 6 shows the relationship of various types of numbers.*

Figure 6

EXAMPLE 4 Classifying the Numbers in a Set

List the numbers in the set

$$
\left\{-3, \frac{4}{3}, 0.12, \sqrt{2}, \pi, 10,2.151515 \ldots(\text { where the block } 15 \text { repeats })\right\}
$$

that are
(a) Natural numbers
(b) Integers
(c) Rational numbers
(d) Irrational numbers
(e) Real numbers

Solution (a) 10 is the only natural number.
(b) -3 and 10 are integers.
(c) $-3, \frac{4}{3}, 0.12,10$, and $2.151515 \ldots$ are rational numbers.
(d) $\sqrt{2}$ and π are irrational numbers.
(e) All the numbers listed are real numbers.

[^1]
Approximations

Every real number may be represented by a decimal.
In practice, the decimal representation of an irrational number is given as an approximation. For example, using the symbol \approx (read as "approximately equal to"), we can write

$$
\sqrt{2} \approx 1.4142 \quad \pi \approx 3.1416
$$

In approximating decimals, we either round off or truncate to a given number of decimal places.* The number of places (to the right of the decimal point) establishes the location of the final digit in the decimal approximation.

Truncation: Drop all the digits that follow the specified final digit in the decimal.
Rounding: Identify the specified final digit in the decimal. If the next digit is 5 or more, add 1 to the final digit; if the next digit is 4 or less, leave the final digit as it is. Then truncate following the final digit.

EXAMPLE 5 Approximating a Decimal to Two Places

Approximate 20.98752 to two decimal places by
(a) Truncating
(b) Rounding

Solution For 20.98752, the final digit is 8, since it is two decimal places to the right of the decimal point.
(a) To truncate, we remove all digits following the final digit 8. The truncation of 20.98752 to two decimal places is 20.98 .
(b) The digit following the final digit 8 is the digit 7 . Since 7 is 5 or more, we add 1 to the final digit 8 and truncate. The rounded form of 20.98752 to two decimal places is 20.99 .

EXAMPLE 6 Approximating a Decimal to Two and Four Places

	Rounded to Two Decimal	Rounded to Four Decimal Places	Truncated to Two Decimal Places	Truncated to Four Decimal Places
Number	3.14	3.1416	3.14	3.1415
(a) 3.14159	0.06	0.0561	0.05	0.0561
(b) 0.056128	893.46	893.4613	893.46	893.4612
(c) 893.46125				

Now Work problem 27

Significant Digits

There are two types of numbers-exact and approximate. Exact numbers are numbers whose value is known with 100% certainty and accuracy. For example, there are 12 donuts in a dozen donuts, or there are 50 states in the United States.

[^2]Approximate numbers are numbers whose value is not known with 100% certainty or whose measurement is inexact. When values are determined from measurements they are typically approximate numbers because the exact measurement is limited by the accuracy of the measuring device and the skill of the individual obtaining the measurement. The number of significant digits in a number represents the level of accuracy of the measurement.

The following rules are used to determine the number of significant digits in approximate numbers.

The Number of Significant Digits

- Leading zeros are not significant. For example, 0.0034 has two significant digits.
- Embedded zeros are significant. For example, 208 has three significant digits.
- Trailing zeros are significant only if the decimal point is specified. For example, 2800 has two significant digits. However, if we specify the measurement is accurate to the ones digit, then 2800 has four significant digits.

When performing computations with approximate numbers, it is important not to report the result with more accuracy than the measurements used in the computation.

When performing computations using significant digits, proceed with the computation as you normally would, then round the final answer to the number of significant digits as the least accurately known number. For example, suppose we want to find the area of a rectangle whose width is 1.94 inches (three significant digits) and whose length is 2.7 inches (two significant digits). Because the length has two significant digits, we report the area to two significant digits. The area, $(1.94$ inches $)(2.7$ inches $)=5.238$ square inches, can only be written to two significant digits and is reported as 5.2 square inches.

Calculators

Calculators are finite machines. As a result, they are incapable of displaying decimals that contain a large number of digits. For example, some calculators are capable of displaying only eight digits. When a number requires more than eight digits, the calculator either truncates or rounds. To see how your calculator handles decimals, divide 2 by 3 . How many digits do you see? Is the last digit a 6 or a 7 ? If it is a 6 , your calculator truncates; if it is a 7 , your calculator rounds.

There are different kinds of calculators. An arithmetic calculator can only add, subtract, multiply, and divide numbers; therefore, this type is not adequate for this course. Scientific calculators have all the capabilities of arithmetic calculators and contain function keys labeled $\ln , \log , \sin , \cos , \tan , x^{y}$, inv, and so on. Graphing calculators have all the capabilities of scientific calculators and contain a screen on which graphs can be displayed. As you proceed through this text, you will discover how to use many of the function keys.

Figure 7 shows $\frac{2}{3}$ on a TI-84 Plus graphing calculator. How many digits are displayed? Does a TI-84 Plus round or truncate? What does your calculator do?

Operations

In algebra, we use letters such as x, y, a, b, and c to represent numbers. The symbols used in algebra for the operations of addition, subtraction, multiplication, and division are,,$+- \cdot$, and $/$. The words used to describe the results of these operations are sum, difference, product, and quotient. Table 1 on the following page summarizes these ideas.

Table 1	Operation	Symbol
	Addition	$a+b$
Subtraction	$a-b$	Words
Multiplication	$a \cdot b,(a) \cdot b, a \cdot(b),(a) \cdot(b)$, $a b,(a) b, a(b),(a)(b)$ Division	Product: a times b
	a/b $\frac{a}{b}$	

In algebra, we generally avoid using the multiplication sign \times and the division sign \div so familiar in arithmetic. Notice also that when two expressions are placed next to each other without an operation symbol, as in $a b$, or in parentheses, as in $(a)(b)$, it is understood that the expressions, called factors, are to be multiplied.

We also prefer not to use mixed numbers in algebra. When mixed numbers are used, addition is understood; for example, $2 \frac{3}{4}$ means $2+\frac{3}{4}$. In algebra, use of a mixed number may be confusing because the absence of an operation symbol between two terms is generally taken to mean multiplication. The expression $2 \frac{3}{4}$ is therefore written instead as 2.75 or as $\frac{11}{4}$.

The symbol $=$, called an equal sign and read as "equals" or "is," is used to express the idea that the number or expression on the left of the equal sign is equivalent to the number or expression on the right.

EXAMPLE 7 Writing Statements Using Symbols

(a) The sum of 2 and 7 equals 9 . In symbols, this statement is written as $2+7=9$.
(b) The product of 3 and 5 is 15 . In symbols, this statement is written as $3 \cdot 5=15$.
an Now Work problem 39

3 Evaluate Numerical Expressions

Consider the expression $2+3 \cdot 6$. It is not clear whether we should add 2 and 3 to get 5 , and then multiply by 6 to get 30 ; or first multiply 3 and 6 to get 18 , and then add 2 to get 20 . To avoid this ambiguity, we have the following agreement.

We agree that whenever the two operations of addition and multiplication separate three numbers, the multiplication operation will always be performed first, followed by the addition operation.

For $2+3 \cdot 6$, we have

$$
2+3 \cdot 6=2+18=20
$$

EXAMPLE 8 Finding the Value of an Expression

Evaluate each expression.
(a) $3+4 \cdot 5$
(b) $8 \cdot 2+1$
(c) $2+2 \cdot 2$

Solution

(a) $3+4 \cdot 5 \underset{\substack{\uparrow \\ \text { Multiply first }}}{=} 3+20=23$
(b) $8 \cdot 2+1 \underset{\substack{\bigcap_{1} \\ \text { Multiply first }}}{=} 16+1=17$
(c) $2+2 \cdot 2=2+4=6$

[^0]: *Some books use the notation A^{\prime} for the complement of A.

[^1]: Now Work Problem 23
 *The set of real numbers is a subset of the set of complex numbers. We discuss complex numbers in Chapter 1, Section 1.4.

[^2]: * Sometimes we say "correct to a given number of decimal places" instead of "truncate."

